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DESCRIPTION

We consider the problem of a strong explosion surrounded by a porous com-
pacting buffer medium, consisting of solid, incompressible particles separated by void
space. The buffer medium is idealized to be separated from the explosion products
by' an impermeable membrane so that Rayleigh-Taylor instability, and consequent
interpenetration, is neglected. The entire system is assumed to be contained in a
thin-walled spherical pressure vessel, the stress in the walls of which we seek to min-
imize. The compaction behind the shock front in the buffer medium is taken to
be uniform, and the strength of the porous material is assumed to be negligible in
comparison to the compressibility of the fully compacted medium. If the impulse is
delivered uniformly to the walls of the vessel, and the explosive debris behaves as a

perfect gas, it has been shown [1] that the peak hoop stress is given by:

gomb  2[(Xjw+1)"TTT 1]

S = P.E 31+a—v)(1- k1/3)(X [w)® (1)

where 6 and R are respectively the wall thickness and sphere radius, X is the buffer-
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to-explosive mass ratio, £ = 1 — poo/po, w = poo/kpp, and v is the ratio of specific
heats of the expanded explosion products. pgg is the initial density of the buffer, pg is
the compacted density behind the shock front, and pp is the density of the explosive.
The equilibrium pressure, P, = 3(y — 1)W/47R3, generated by the explosive yield
W, is used to normalize the stress. The parameter « is the fractional dissipation.
Although material at rest acquires, in a strong shock wave; the same kinetic and
internal energies per unit mass, there is experimental evidence that substantially less

dissipation actually occurs in the compaction process; a was therefore introduced to

measure the discrepancy.

EXPERIMENTS

Salt and “Snow” Buffers

In a series of unpublished experiments, performed during the three year period
beginning in the fall of 1958, W. B. Crowley of our laboratory measured the hoop
strain in a collection of thin-walled spherical pressure vessels subjected to explosive
loading. Small spherical charges of PBX 9404 were centrally located in the spheres
and surrounded either with air, salt, or “snow” (actually finely shaved ice, sufficiently
subcooled to avoid melting during shaving and loading). The steel vessels employed

varied from 1-ft to 4-ft in diameter, and at least eight wire-strain-gages were used for

each test.

Figure 1 compares the results obtained with air- and salt buffers. The charge

parameter
_ Poomp

= —— 2
pa Mo (2)

permits a representation of the data on the same graph. p4 is the density of air at
STP so that ¢ is approximately the ratio of the charge mass, mp, to the mass of air

that would fill a sphere with volume just sufficient to hold the buffer mass myg.

Each symbol in the figure represents the peak stress determined by averaging
the output of the several gages attached to a given sphere. The filled-in symbols
depict the salt results. For the salt, and over the entire domain of ¢ investigated,

S is seen to remalin approximately constant at a value of about 1.5. We note that
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S = 2 is the expected value of S if only the equilibrium pressure, P,, is applied
in stepwise fashion. The solid curves marked o are derived from equation (1). In
order to evaluate this expression, both the loading density (pgo = 1.18 g/cm?®) and
the density of the compacted salt (po) are required. Unfortunately, the latter was
not measured in the experiments although the salt was compacted into a hard layer
which adhered to the spherical wall, and which was removed only with difficulty by a
combination of dissolution and mechanical means. The curves in Figure 1 are based
on compaction to 76% of theoretical density (2.13 g/cm?®). Even if fully compacted
material was derived, however, the fractional dissipation would not vary much. For
example, the experiments portrayed in Figure 1 show that S ~ 1.45 at ¢ = 0.9. At
76% of theoretical density, equation (1) yields a = 0.46; at 100% , a = 0.59. The

same range of a was determined from a series of impulse experiments performed with

carbon powder [1].

Figure 1 also shows that the salt is much more effective than air as a buffer,
especially at low values of ¢. The air data exhibit a much wider scatter but are
mostly contained between simply derived theoretical bounds on S. For a bare charge

surrounded by void, an upper bound on S is:

Sv = [EJ(1 - v)puwen)}/3(—1) (2)

where E and v are respectively the Young’s modulus and Poisson’s ratio for the
containing vessel with density p,,, and ep is the specific explosion energy. Equation
(2) assumes the explosion products behave as a perfect gas, that the impulse delivery
period is small compared with the eigenperiod of the vessel, and neglects rebound
effects. This is the basis for the horizontal dashed line in Figure 1. The dashed curve
labeled air blast theory derives from Chernyi’s approximate treatment for a strong

explosion surrounded by a perfect gas medium [2]:

— 1) me 1/2
SA:SV{1+[2§::_1—)m—D] } (3)

where mg here is the mass of the shock-heated air (whose ¥ we have assumed to be

the same as for the explosion products).

Crowley’s experimental data for snow are given in Figure 2. The value of S

is seen to increase more or less monotonically from about 0.3 at ¢ = 0.1 to nearly
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5 at ¢ = 1.4. The theorctical curves for fixed o are arbitrarily computed assuming
the snow, with initial density pog = 0.5 g/cm®, ended up at po = 0.76 g/cra®. The
snow, however, was not found in a compacted layer, as was the salt, but instead
fell to the bottom of the spherical container. We speculate that the rapid increase
in S (and apparent decrease in a) with increasing charge is due to a decrease in
the impulse delivery time brought about by the compaction process. We note that
equation (1) assumes that the shocked material collapses to a final density that does
not depend on pressure, so that (dP/dp), — 0. If this condition is violated and, in
particular, if the wave speed in the compacted material approaches or exceeds the

particle velocity, the impulse delivery time will rapidly decrease and the wall stress

will increase proportionally.

Vermiculite Buffers

The ambiguity in the solution of equation (1) for « is eliminated when Neals’s
experiments with vermiculite (exfoliated mica) are considered [3]|. Using flash radio-
graphy, and charged electrical shorting pins, he showed that the compaction factor,
po/poo (= (1 — k)™7) is more or less constant over an order-of-magnitude variation
in charge-to-buffer mass ratio. Figure 3 depicts the results. The experiment
conducted in spherical pressure vessels of varying size, as shown in the figure. Tests

were also made with the spheres either filled with air or evacuated (to 0.001 atm).

The filled-in symbols represent the measured wall stress with the vermiculite
as a buffer, and the solid curves the stress predicted using equation (1). The observed
behavior is similar to that observed with the snow in that S appears to increase more
or less monotonically with ¢; also a is roughly unity at the low ¢ limit. Note, however,
that the abscissa scale in Figure 3 is very much magnified in comparison with Figure

2, so that at ¢ = 1.4 (the upper snow limit, where S = 5) S = 1.4, comparable to the

value for salt in Figure 1.

The dashed curve, labeled air blast theory, was calculated using equation (3),
except that Sy was determined from the tests made with the evacuated spheres. The
shaded vertical region on the right-hand side of Figure 3 shows the range of Sy for

these shots; the average value, based on 5 tests, was 2.37. Using this value for Sy to



calculate S, is seen to give quite good agreement with the experimentally determined

values of the latter, represented by the hollow symbols in the figure.

CONCLUSION

The impulse delivered to the walls of a vessel containing an explosion will
increase if material is placed between the walls and the charge. If the impulse ap-
plication time is small compared with the eigenperiod of the vessel, the wall stress
will increase in direct proportion to the impulse. Conversely, if the application period
can be extended beyond half the eigenperiod, the peak stress will be proportional to
the ratio of the irnpulse to the delivery period. With powder or granular buffers, it
is possible for the delivery period to increase faster than the impulse as the buffer
mass is increased. This is the reason why certain powders, or porous materials, can

provide stress reduction even below that observed by evacuating the space between

the walls and the explosive.

If the buffer material is to serve as an effective mitigator, it must collapse on
shock loading to a final density that depends only weakly on pressure; the criterion is
that the wave speed in the material that impacts the wall must be small in comparison
with the impact (particle) speed. This behavior apparently occurs with salt, at least
for modest values of the charge parameter (¢), but to a lesser extent with snow under
the same conditions. The vermiculite data are comparable to the salt in the ¢ region
where the two overlap; with increasing explosive, however, the vermiculite appears to

behave like the snow and its effectiveness as a mitigator rapidly diminishes.

It is also clear that once the wave speed criterion is seriously violated, the use
of a powder buffer will result in a higher wall stress than if only air filled the space
between walls and charge. For snow, the crossover point appears to occur at ¢ = 1
whereas for vermiculite not until ¢ =~ 4. Over the range investigated (¢(max) = 1.1),
the performance of the salt did not appear to degrade with ¢; the peak stress was at

least 3 times less than observed with air at ¢ = 0.7 and 7 times less at ¢ = 0.1.

Salt (and also carbon) appears to dissipate significantly less energy than would
be predicted with the conventional snowplow model. The fractional dissipation pa-

rameter, a, used to measure the discrepancy was inferred to be 0.4 - 0.6 over the



entire range of ¢ in the salt experiments. The same range of a was determined for
carbon, albeit at much higher ¢ [1]. The reasou for this behavior is thought to be
connected to resistance to deformation of the individual powder grains in the sense of
dynamic pore closure {4]. In this connection, it should be remarked that, although the
mechanism here is not well understood, it appears to be rate independent since the
the carbon experimental results scale approximately over a six-fold change in linear
dimension. Energy dissipation accompanying shock compression of porous bodies has
been shown analytically to be rate independent whenever the shock pressure does not

exceed the yield strength of the (rigid) matrix material [5].
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CAPTIONS

FIG. 1 Normalized peak wall stress as a function of the charge parameter for the
experiments with granular salt (filled-in symbols). These are contrasted with exper-

iments in the same pressure vessels, the space between the walls of which and the

charge being filled with air.

FIG. 2 Normalized peak wall stress as a function of the charge parameter for the

experiments with “snow”.

FIG. 3 Normalized peak wall stress as a function of the charge parameter for the
experiments with vermiculite [3] (filled-in symbols). Hollow symbols identify con-
trasting air experiments. The shaded vertical region at the right indicates the bounds

on the stress observed in the bare-charge (evacuated vessel) experiments.
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